Venn Diagrams

We can visual subsets of a universal set, and how they interact/overlap, using *Venn diagrams*, as shown below.

On the left, the brown shaded region is $A \cap B$. It is also $(A' \cup B')'$. On the right, the shaded area is $A \cap B$.

Venn Diagrams

Some more examples:

Venn Diagrams

Compute the elements of various subsets

Example If $A = \{1, 2, 3, 4\}$, $B = \{2, 4, 6, 8\}$ and $C = \{3, 4, 5, 6\}$ are subsets of the universal set $U = \{1, 2, 3, ..., 10\}$, list the elements of the set $A' \cup (B \cap C)$.

$$A' = \{5, 6, 7, 8, 9, 10\}, B \cap C = \{4, 6\} \text{ so } A' \cup (B \cap C) = \{4, 5, 6, 7, 8, 9, 10\}.$$

Venn diagrams for presentations

Venn diagrams using two or three sets are often used in presentations.

